Diversity and Evolution of Salt Tolerance in the Genus Vigna

نویسندگان

  • Kohtaro Iseki
  • Yu Takahashi
  • Chiaki Muto
  • Ken Naito
  • Norihiko Tomooka
چکیده

Breeding salt tolerant plants is difficult without utilizing a diversity of wild crop relatives. Since the genus Vigna (family Fabaceae) is comprised of many wild relatives adapted to various environmental conditions, we evaluated the salt tolerance of 69 accessions of this genus, including that of wild and domesticated accessions originating from Asia, Africa, Oceania, and South America. We grew plants under 50 mM and 200 mM NaCl for two weeks and then measured the biomass, relative quantum yield of photosystem II, leaf Na+ concentrations, and leaf K+ concentrations. The accessions were clustered into four groups: the most tolerant, tolerant, moderately susceptible, and susceptible. From the most tolerant group, we selected six accessions, all of which were wild accessions adapted to coastal environments, as promising sources of salt tolerance because of their consistently high relative shoot biomass and relative quantum yield. Interestingly, variations in leaf Na+ concentration were observed between the accessions in the most tolerant group, suggesting different mechanisms were responsible for their salt tolerance. Phylogenetic analysis with nuclear DNA sequences revealed that salt tolerance had evolved independently at least four times in the genus Vigna, within a relatively short period. The findings suggested that simple genetic changes in a few genes might have greatly affected salt tolerances. The elucidation of genetic mechanisms of salt tolerances in the selected accessions may contribute to improving the poor salt tolerance in legume crops.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sodium Chloride Salt Tolerance Evaluation and Classification of Spring Rapeseed (Brassica napus L.)

Abiotic stresses such as salinity, are factors that severely affects agricultural production. To evaluate the effects of salinity on some morphological and physiological traits related to salt tolerance of 22 genotypes of spring rapeseed cultivars in the vegetative growth stage, an experiment was conducted as a split plot form based on Randomized Complete Blocks Design using levels of salinity:...

متن کامل

Distinct patterns of natural selection in Na+/H+ antiporter genes in Populus euphratica and Populus pruinosa

Salt tolerance genes constitute an important class of loci in plant genomes. Little is known about the extent to which natural selection in saline environments has acted upon these loci, and what types of nucleotide diversity such selection has given rise to. Here, we surveyed genetic diversity in three types of Na+/H+ antiporter gene (SOS, NhaD, and NHX, belonging to the cation/proton antiport...

متن کامل

Diversity of chromosome numbers and meiotic studies in genus Anchusa (Boraginaceae) from Iran (10 Nov 2015)

The present study reports the chromosome number and meiotic behaviour of 14 populationsbelonging to four taxa of Anchusa subgenus Buglossum Gusul. from Iran. All populationsshowed the chromosome number 2n= 4x= 32. It is the first meiotic study for A. subg.Buglossum. We discuss some habit form and evolutionary aspect in the light of cytogeneticdata. The origin of polyploidy (auto-allopolyploidy)...

متن کامل

Evaluation of salinity tolerance in rice genotypes

Salinity is considered as one of important physical factors influencing rice (Oryza sativa L.) production. Knowledge of salinity effects on rice seedling growth and yieldcomponents would improve management practices in fields andincrease our understanding of salt tolerance mechanisms in rice. This study was designed to assess the role of Saltol QTL in regards to effects of salinity on plant gro...

متن کامل

Molecular diversity of Symbiodinium spp. within six coral species in Larak Island, the Persian Gulf

Reef-building coral harbor communities of photosynthetic taxa of the genus Symbiodinium (zooxanthellae). The genus Symbiodinium is currently classified into nine genetic clades (A–I). Various corals harbor different Symbiodinium clades; some show specificity to a single strain. Coral and their zooxanthellae are sensitive to environmental stresses. In the Persian Gulf, coral reefs are subject to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016